您现在的位置:   首页 >> 新闻中心 >> 帮助文档

如何理解SCRM的用户线索

发布人:www.yunke.ai 发布时间:2021-09-24 12 次浏览

编辑导语:SCRM系统可以帮助发现和发掘更多的线索,完善用户信息;并且能够提升用户体验,维持品牌与用户之间的良好关系;本文作者分享了关于如何理解SCRM的用户线索,我们一起来了解一下。

01 用户线索的应用平台

用户线索这一名词,发源于线下销售的过程,线上主要应用于SCRM系统之中。

在设计系统的子功能前,应先认识其应用平台。从应用平台的核心功能出发,理解子功能的定位。

1. CRM是什么?

认识SCRM之前,先认识CRM,然后再理解它们之间的差异。

理解用户线索

CRM的中文名称是客户关系管理,它是一种客户资源管理及运营方法。通过信息技术帮助企业识别、发展、维护以及服务客户,提升企业收入,并提高户满意度和忠诚度。

YK,公众号:goYangKun漫谈CRM体系化建设1 – CRM与客户管理综述

基于CRM系统的侧重点进行分类,能够粗略地划分MCRM、OCRM、SCRM、ACRM。

Marketing CRM,侧重于运营、营销的自动化,对应企业的运营团队;Service CRM侧重于服务的自动化,对应企业的售后团队——这两者覆盖了用户售前、售中、售后的三个阶段。

而Operational CRM,则侧重在销售自动化,对应企业的销售团队。

这样划分的原因主要有两点:

  • 组织架构的划分,大多数企业的运营、销售、售后团队是分离的;

  • 融合性的产品实现难度大、成本高,要将运营、销售、售后的所有需求整合,对产品架构能力要求非常高,实现的周期也非常漫长。

这三个系统的核心功能是相近的,主要为识别用户、运营用户,并追踪效果;只是不同团队的目标用户、运营手段以及监测的数据具有差异,衍生的运营工具也有所不同。

而用户线索则在识别用户环节,是一切的开始。

2. SCRM的S是什么?

理解用户线索

近些年,伴随CRM被提及更多的是SCRM,这个S与上文所述不同,指的是社交、简单高效以及智能。

理解用户线索

SCRM的全称为社会化客户关系管理,核心在于Social——社交。

根据CNNIC的2021年中国社交媒体市场分析报告,2020年2月中国网民规模已经达到10.8亿,随着互联网覆盖广度和深度的提升,流量也变得越来越难以获取。

即使是四五线城市,衣食住行的相关服务,也逐渐的从线下转移至了线上。

用户获取成本的增高,再加上即时通讯app的兴起,使得大多数人的眼光瞄准了即时通讯。

这种模式以前称之为微商,现在叫做私域,不同的企业也逐步借助企业微信等工具,侵占了我们的聊天窗和朋友圈。

根据极光发布的《2020年Q1移动互联网行业数据研究报告》,即时通讯类APP在2019年APP平均使用时长中的占比超过了25%,而占据榜首的微信也成为了销售人员和服务人员展业的重要工具。

  • Simple,解读为简单、高效。流量红利的消失,规模化的愈发困难,企业的经营策略也从开源转向节流,开始注重效率和成本。

  • Smart,指的是智能,它来源于科学技术的发展;一方面是自动,使得更多的工作能够让系统承担;另一方面则是推荐和个性化。

从这3个定义看,高效、智能意味着关注线索的价值和精确度,需要帮助一线人员更容易促进成交,提供更好的服务。

而社交,则意味着要考虑一线人员要采用什么样的渠道与用户沟通。

3. CRM和SCRM的区别

理解用户线索

了解了CRM和SCRM,才能够回答2者区别。SCRM在CRM的基础上,融合了社交。

但2者的目标是一致的,都是通过更合理、高效的管理和运营客户,提升用户的生命周期价值,所以结果指标上2者并无太大的偏差。

而融合了社交,与用户的沟通方式由单向转为了双向,由触达、电话的单点转为了互动;基于此,在探询用户成交的过程,还会增加类似客户互动率的相关指标。

02 用户线索的定义

理解用户线索

用户线索,应用在SCRM系统,服务于识别用户环节,它代表着一次营销或服务机会。

对比原始数据,它是高价值数据的组合;帮助一线的销售或售后同学提升服务人效及转化效率。

服务线索,将售后同学的工作模式由被动接受电话或IM进线转变为主动服务;销售线索,帮助销售同学减少挖掘用户的时间,让其将精力放在促成交环节。

但同样是识别用户,它和用户特征、用户画像又有哪些区别呢?这个问题,从数据定义、数据价值、使用方式三个维度来解答。

1. 数据定义

理解用户线索

从数据类型来看看,特征和线索是数据的组合,而画像是数据的集合。

年龄大于25岁,是一个用户特征;而“年龄大于25岁”加上“每日工作时长超过12个小时”这两个特征的组合,则可以称为大龄社畜青年。

而用户线索不仅是特征,它还是事件和特征的组合。

从时效性看,事件更多的是实时触发,而特征多为离线清理;前者是开始,而后者是结束;比如说:“我今天乘坐了地铁”和“地铁出行用户”。

用户画像则是多维特征的集合,由基础属性、地理属性、社会属性等一系列不同维度特征呈现用户或者群体特点,从而进行分析工作。

2. 数据价值

组合的目的,是为了更高效的使用数据。

从数据价值层面看,用户特征的目标性较弱,不会特别在意数据价值,它主要解决从无到有的问题。

而用户线索由于应用方主要是销售和服务同学,其目标聚焦在如何将用户转变成客户以及如何让用户、客户不流失,希望潜在用户能够更靠近成交,希望服务的能够更为及时。

理解用户线索

地铁出行用户这样的特征是无法准确销售和服务的。

而如果是“我今天乘坐了地铁”,看了手机的“车辆降价广告很久”,“我没有车”但是“月收入能够支持车贷”这样的数据组合,就能够比较清晰的制定运营策略,从而进行服务或销售了。

3. 使用方式

在使用方式上看,线索和特征是“圈选->运营”的步骤,我们明确知道要对什么用户进行运营。

而用户画像则会额外经过分析过程,即“分析->圈选->运营”,它偏重于经过分析结合数据模型后进一步制定运营策略。

03 用户线索的生命周期

明晰概念,规划才能够清晰。

在进行产品规划时,可以从事物的流转过程及状态着手;思考用户线索提供给销售和服务人员的前、中、后分别有哪些阶段,以及每个阶段需要做什么样的事情。

完整的流转过程,也是用户线索的生命周期;由此可以制定最小可执行版本,然后再有序、有效的进行产品规划以及迭代。

理解用户线索

1. 线索收集

理解用户线索

线索的收集和数据的整合并没有太大的区别,目标是数据越多越好。

数据量越多,意味着客流量越大,在10000个人经过的道路开便利店和在1000个人经过的道路开便利店,两者每日成交的概率是不同的。

其次数据维度越多,意味着给运营人员决策和分析的维度越多,我们不仅能基于性别采购商品,还能基于年龄、收入去采购商品。

而分析也是相同的道理,样本量大分析的结果代表性更高,决策的风险更低;维度多,分析的角度也更多。

在这一阶段产品同学的考量是,基于不同的数据来源,协助研发同学设计统一的数据上报规范。

对元数据进行可视化的管理后,再依据不同业务对数据的时效性要求提供服务。

功能上可以参见数据集市,在这里就不过多展开了。

2. 线索清洗

这一环节,主要包含了数据落库后的清洗、过滤、去重、合并4个步骤。

理解用户线索

清洗指发现并修正数据中可识别的错误,包括检查数据一致性,处理无效值和缺失值等。

理解用户线索

而过滤步骤主要面向运营,不可运营的用户是不具备价值的。这里的运营指的用户拥有能够被触达、互动的数据。

如:具有实名手机号特征,能够进行电话外呼;具有添加企业微信且未删除特征,能够使用企业微信与用户互动;具有公众号openId且关注公众号,能够通过公众号发送模板消息。

除了渠道触达的数据,当然也还包含防骚扰、红黑名单等过滤维度。

理解用户线索

去重及合并的概念可以自行去查询。

从业务角度的理解,合并及去重是为了减少冗余数据,保障名单数量。

一线人员每日收到的名单是有限的,重复的名单数据会使销售基数虚高,所以我们需要进行合并以及去重。

当意向客户分配给销售人员后,会有一定的保护时长。这段时间内,这名用户不能被其他的销售人员二次销售。

当保护期内这名用户产生新的行为时,我们需要将它的数据合并到已分配给销售人员的用户中,从而保护名单。

3. 线索组合及评分

线索的组合,可以是特征间的组合,也可以是事件与特征的组合,这部分在前文已经有了比较全面的描述。

产品同学在这一环节设计的是“用户圈选”功能,其包含了实时事件及离线数据的融合、数据的提取频次、数据的交并差等。

产品参考上可以体验易观方舟、神策数据,在此同样不进行展开。

理解用户线索

理解线索评分可以从线索的目的出发:提升服务人效,避免被动等待用户,节省寻找用户的耗费时间。

而评分则是进一步的过滤方式,它也决定了后续的分配规则和转化效率。

评分高的线索更多的分配给处理时效快、转化效率高的销售同学。

其次,也依据评分帮助一线进行优先级及时间管理,将更多的精力投入至高质量的线索之中,降低其无效投入。

4. 线索下发

理解用户线索

线索下发,回答的问题是:用户分配给谁、分配多久、以及分配后应该怎么样做。

分配策略则指的分配给谁,各自分配多少比例,上限又是多少;分配后,什么时候会失效;线索的有效期能够帮助我们监控跟进过程,以及制定释放流转的规则。

运营策略指的当销售或服务人员接收到用户数据后,应该采取什么样的操作步骤展开销售和服务,每个操作步骤也会关联运营人员建议的沟通方式以及内容。

5. 线索跟进

理解用户线索

上图中,仅体现了线索跟进的正向流转过程。

实际上,在意向确认后可能直接进入商机转化,又或者直接进行服务转交。

确认用户意向后,基于成交意愿执行不同的运营步骤,对于暂无成交意愿的客户目标是建立联系,进行用户关怀及教育;而如果有成交意向,则进一步采集诉求,进行商品的推荐。

而在成交后,则通过服务不断提升用户的信任感,以期从服务中再次发现成交的机会。

在这个阶段产品应该考量的是,线索应该怎么流转到下一阶段,什么时候又应该释放回到公海。

6. 效果追踪

效果追踪,在设计上会涉及业绩的匹配方式,依此进行佣金结算、排行激励及报表分析。

理解用户线索

在这一环节中,简单介绍用户自识别至成交的漏斗,其定义如下:

  • 名单总数:线索组合后的用户总数;

  • 下发成功数:经过防骚扰屏蔽、红黑名单或运营策略过滤后下发成功数量;

  • 互动数:下发给销售或售后人员后,用户响应的数量;

  • 意向数:响应用户中,有成交意向的用户数;

  • 成交数:有成交意向的用户中,最终成交的数量;

  • 复购数:成交的用户中,二次购买的数量;


本页面均来此互联网页面如有触犯其他或者第三方利益请联系站长删除 137865155@qq.com